

Welcome to django-ftl’s documentation!

Contents:

	Installation

	Usage
	Terminology

	FTL files and layout

	Bundles

	Activating a locale/language
	Using middleware

	Outside of the request-response cycle

	Using bundles from Python
	Lazy translations

	Aliases

	Using bundles from Django templates
	ftlconf

	withftl

	ftlmsg

	Alternative configuration

	HTML escaping

	Template considerations

	Setting the user language preference

	Auto-reloading

	API documentation
	Activating/deactivating locales
	activate()

	deactivate()

	override()

	Bundles
	Bundle

	Error handling in Bundle

	Contributing
	Types of Contributions
	Report Bugs

	Fix Bugs

	Implement Features

	Write Documentation

	Submit Feedback

	Get Started!

	Pull Request Guidelines

	Credits
	Development Lead

	Contributors

	History
	0.14 (2023-02-16)

	0.13 (2021-09-16)

	0.12.1 (2020-05-09)

	0.12 (2020-04-02)

	0.11 (2020-03-24)

	0.10 (2019-05-23)

	0.9.1 (2019-03-02)

	0.9 (2018-09-10)

	0.0.1 (2018-05-19)

Installation

At the command line:

$ pip install django-ftl

You can also install from latest master on GitHub.

Usage

Using Fluent in a Django project requires understanding a number of concepts and
APIs, in addition to understanding the Fluent syntax [http://projectfluent.org/fluent/guide/]. This guide outlines the main things
you need.

Terminology

Internationalization and localization (i18n and l10n) tools usually distinguish
between ‘languages’ and ‘locales’. ‘Locale’ is a broader term than includes
other cultural/regional differences, such as how numbers and dates are
represented.

Since they go together, Fluent not only addresses language translation, it also
integrates locale support. If a message contains a number substitution, when
different locales are active the number formatting will match the language
automatically. For this reason the django-ftl docs generally do not make a big
distinction between these terms, but tend to use ‘locale’ (which includes
language).

Django’s i18n docs [https://docs.djangoproject.com/en/stable/topics/i18n/#term-locale-name]
distinguish between ‘locale name’ (which look like it, en_US etc) and
‘language code’ (which look like it, en-us). In reality there is a lot
of overlap between these. Most modern systems (e.g. unicode CLDR [http://cldr.unicode.org/]) use BCP 47 language tags, which are the same as
‘language codes’. They in fact represent locales as well as languages, and have
a mechanism for incorporating more specific locale information.

Fluent and django-ftl use BCP 47 language tags in all their APIs (more
information below).

FTL files and layout

Fluent translations are placed in Fluent Translation List files, with the suffix
.ftl. For them to be found by django-ftl, you need to use the following
conventions, which align with the conventions used across other tools that use
Fluent (such as Pontoon).

For the sake of this guide, we will assume you are writing a Django app
(reusable or non-reusable) called myapp - that is, it forms a Python
top-level module/package called myapp. You will need to replace myapp
with the actual name of your app.

You will need your directory layout to match the following example:

myapp/
 __init__.py
 ftl_bundles.py
 locales/
 en/
 myapp/
 main.ftl
 de/
 myapp/
 main.ftl

That is:

	Within your myapp package directory, create a locales directory. In a
typical Django app, this locales directory exists at the same level as
your app-specific templates, templatetags, static etc.
directories.

	For each locale you support, within that folder create a directory with the
locale name. The example above shows English and German. Locale names should
be in BCP 47 format [https://tools.ietf.org/html/bcp47].

	It is recommended that you follow the capitalization convention in BCP 47,
which is:

	Lower case for the language code

	Title case for script code

	Upper case for region code

e.g. en, en-GB, en-US, de-DE, zh-Hans-CN

django-ftl does not enforce this convention - it will find locale files if
different capitalization is used. However, if multiple directories exist for
the same locale, differing only by case (e.g. EN-US and en-US), and
their contents are not the same, then your FTL files will probably not be
found correctly.

Finally, django-ftl will also find the FTL files if you name the directories
in Unix “locale name” convention with underscores e.g. en_GB, although for
the sake of consistency and other tools this is also not recommended.

	Within each specific locale directory, create another directory with the name
of your app. This is necessary to give a separate namespace for your FTL
files, so that they don’t clash with the FTL files that might be provided by
other Django apps. By doing it this way, you can reference FTL
files from other apps in your app — this is very similar to how templates
and static files work in Django.

	Within that myapp directory, you can add any number of further
sub-directories, and can split your FTL files up into as many files as you
want. For the remainder of this guide we will assume a single
myapp/main.ftl file for each locale.

The contents of these files must be valid Fluent syntax. For the sake of this
guide, we will assume myapp has an ‘events’ page which greets the user, and
informs them how many new events have happened on the site since their last
visit. It might have an English myapp/main.ftl file that looks like this:

events-title = MyApp Events!

events-greeting = Hello, { $username }

events-new-events-info = { $count ->
 [0] There have been no new events since your last event.
 [1] There has been one new event since your last visit.
 *[other] There have been { $count } new events since your last visit.
 }

In this .ftl file, events-title, events-greeting and
events-new-events-info are Fluent message IDs. Note that we have used
events- as an adhoc namespace for this ‘events’ page, to avoid name clashes
with other messages from our app. It’s recommended to use a prefix like this for
different pages or components in your app.

Bundles

To use .ftl files with django-ftl, you must first define a
Bundle. They represent a collection of .ftl
files that you want to use, and are responsible for finding and loading these
files. The definition of a Bundle can go anywhere in your project, but we
recommend the convention of creating a ftl_bundles.py file inside your
Python myapp package, i.e. a myapp.ftl_bundles module.

Our ftl_bundles.py file will look like this:

from django_ftl.bundles import Bundle

main = Bundle(['myapp/main.ftl'])

Bundle takes a single required positional argument
which is a list of FTL files. See Bundle API docs
for other arguments.

Activating a locale/language

The most direct way to activate a specific language/locale is to use
django_ftl.activate():

from django_ftl import activate

activate("en-US")

The argument can be any BCP 47 language tag, or a “language priority list”
(a prioritized, comma separated list of language tags). For example:

"en-US, en, fr"

It is recommended that the value passed in should be validated by your own code.
Normally it will come from a list of options that you have given to a user (see
Setting the user language preference below).

As soon as you activate a language, all Bundle objects will switch to using
that language, for the current thread only. (Before activating, they will use
your LANGUAGE_CODE setting as a default if require_activate=False, and
this is also used as a fallback in the case of missing FTL files or messages).

Please note that activate is stateful, meaning it is essentially a global
(thread local) variable that is preserved between requests. This introduces the
possibility that one user’s request changes the behavior of subsequent requests
made by a completely different user. This problem can also affect test isolation
in automated tests. The best way to avoid these problems is to use
django_ftl.override() instead:

from django_ftl import override

with override("en-US"):
 pass # Code that uses this language

Alternatively, ensure that django_ftl.deactivate() is called at the end of a
request.

Using middleware

The way you choose to activate a given language will depend on your exact setup.

django-ftl comes with a few middleware that may help you automatically
activate a locale for every request.

If you were using Django’s built-in i18n solution previously, or are still using
it for some parts of your app, you may also be using
django.middleware.locale.LocaleMiddleware [https://docs.djangoproject.com/en/stable/ref/middleware/#django.middleware.locale.LocaleMiddleware].
If that is the case, and if you want to continue using LocaleMiddleware, the
easiest solution is to add
"django_ftl.middleware.activate_from_request_language_code" after it in your
MIDDLEWARE setting:

MIDDLEWARE = [
 ...
 "django.middleware.locale.LocaleMiddleware",
 "django_ftl.middleware.activate_from_request_language_code"
 ...
]

This is a very simple middleware that simply looks at request.LANGUAGE_CODE
(which has been set by django.middleware.locale.LocaleMiddleware) and
activates that language for django-ftl.

Instead of these two, you could also use
"django_ftl.middleware.activate_from_request_session" by adding it to your
MIDDLEWARE (somewhere after the session middleware). This middleware looks
for a language set in request.session, as set by the set_language view
that Django provides (see set_language docs [https://docs.djangoproject.com/en/stable/topics/i18n/translation/#set-language-redirect-view]),
and uses this value, falling back to settings.LANGUAGE_CODE if it is not
found. It also sets request.LANGUAGE_CODE to the same value, similar to how
django.middleware.locale.LocaleMiddleware behaves.

Both of these provided middleware use override to set the locale, not
activate, as per the advice above, for better request and test isolation.

You are not limited to these middleware, or to using Django’s set_language
view — these are provided as shortcuts and examples. In some cases it will be
best to write your own, using the middleware source code [https://github.com/django-ftl/django-ftl/blob/master/src/django_ftl/middleware.py]
as a starting point.

Outside of the request-response cycle

If you need to generate localized text from code running outside of the
request-response cycle (e.g. cron jobs or asynchronous tasks), you will not be
able to use middleware, and will need some other way to determine the locale
to use. This might involve:

	a field on a model (e.g. User class) to store the locale preference.

	for asynchronous tasks such as Celery, you could pass the locale as an
argument. For Celery, signals such as task-prerun [http://docs.celeryproject.org/en/latest/userguide/signals.html#task-prerun]
might be useful.

Once you have determined the locale you need, use django_ftl.activate() or
django_ftl.override() to activate it.

Using bundles from Python

After you have activated a locale, to obtain a translation you call the
Bundle format() method, passing in a
message ID and an optional dictionary of arguments:

>>> from myapp.ftl_bundles import main as ftl_bundle
>>> ftl_bundle.format('events-title')
'MyApp Events!'

>>> ftl_bundle.format('events-greeting', {'username': 'boaty mcboatface'})
'Hello, \u2068boaty mcboatface\u2069'

The \u2068 and \u2069 characters are unicode bidi isolation characters [https://www.w3.org/International/questions/qa-bidi-unicode-controls] that are
inserted by Fluent to ensure that the layout of text behaves correctly in case
substitutions are in a different script to the surrounding text.

That’s it for the basic case. See format() for
further info about passing numbers and datetimes, and about how errors are
handled.

Lazy translations

Sometimes you need to translate a string lazily. This happens when you have a
string that is defined at module load time (see the Django lazy translation
docs [https://docs.djangoproject.com/en/stable/topics/i18n/translation/#lazy-translation]
for more info). For this situation, you can use
format_lazy() instead of format. It takes
the same parameters, but doesn’t generate the translation until the value is
used in a string context, such as in template rendering.

For example, the verbose_name and help_text attributes of a model field
could be done this way:

from django.db import models
from myapp.ftl_bundles import main as ftl_bundle

class Kitten(models.Model):
 name = models.CharField(
 ftl_bundle.format_lazy('kitten-name'),
 help_text=ftl_bundle.format_lazy('kitten-name.help-text'))

kittens.ftl

kitten-name = name
 .help-text = Use most recent name if there have been are multiple.

Note that here we have used attributes [https://projectfluent.org/fluent/guide/attributes.html] to combine the two
related pieces of text into a single message

If you do not use format_lazy, then the verbose_name and help_text
attributes will end up always having the text translated into the default
language.

As a more effective way to prevent this from happening, you can also pass
require_activate=True parameter to Bundle. As
long as there is no activate call at module level in your project, this will
cause the Bundle to raise an exception if you attempt to use the format
method at module level.

Note

If you pass require_activate=True, you may have trouble with some
features like Django migrations which will attempt to serialize model
and field definitions, which forces lazy strings to be evaluated.

You can work around this problem by putting the following code in
your ftl_bundles.py files:

import sys
import os.path
from django_ftl import activate

if any(os.path.split(arg)[-1] == 'manage.py' for arg in sys.argv) and 'makemigrations' in sys.argv:
 activate('en')

Aliases

If you are using the format and format_lazy functions a lot, you can
save on typing by defining some appropriate aliases for your bundle methods at
the top of a module - for example:

from myapp.ftl_bundles import main as ftl_bundle

ftl = ftl_bundle.format
ftl_lazy = ftl_bundle.format_lazy

Then use ftl and ftl_lazy just as you would use ftl_bundle.format
and ftl_bundle.format_lazy.

Using bundles from Django templates

To use django-ftl template tags in a project, django_ftl must be added to
your INSTALLED_APPS like this:

INSTALLED_APPS = (
 ...
 'django_ftl.apps.DjangoFtlConfig',
 ...
)

Put {% load ftl %} at the top of your template to load the template tag
library. It provides 3 template tags, at least one of which you will need:

ftlconf

This is used to set up the configuration needed by ftlmsg, namely the
bundle to be used. It should be used once near the top of a template (before
any translations are needed), and should be used in the situation where most of
the template will use the same bundle. For setting the configuration for just
part of a template, use withftl.

The bundle argument is either a bundle object (passed in via the template
context), or a string that is a dotted path to a bundle.

(An optional mode may also be passed, which is currently limited to a single
string value 'server' which is also the default value, so it is currently
not very useful! In the future further options may be added, mainly with the
idea of enabling client-side rendering of the messages.)

Example:

{% load ftl %}
{% ftlconf bundle='myapp.ftl_bundles.main' %}

Example where we pass in the bundle object from the view:

myapp.views

from myapp.ftl_bundles import main as main_bundle

def my_view(request):
 # ...
 return render(request, 'myapp/mypage.html',
 {'ftl_bundle': main_bundle})

{# myapp/events.html #}

{% load ftl %}
{% ftlconf bundle=ftl_bundle %}

withftl

withftl is similar to ftlconf in that its purpose is to set
configuration data for generating messages. It differs in that:

	It sets the data only for the contained template nodes, up to a closing
endwithftl node, which is required.

	It also takes a language parameter that can be used to override the
language, in addition to the bundle and mode parameters that
ftlconf take. This should be a string in BCP 47 format.

Multiple nested withftl tags can be used, and they can be nested into a
template that has ftlconf at the top, and their scope will be limited to the
contained template nodes as you would expect.

Example:

{% load ftl %}

{% withftl bundle='myapp.ftl_bundles.main' %}
 {% ftlmsg 'events-title' %}
{% endwithftl %}

{% withftl bundle='myapp.ftl_bundles.other' language='fr' %}
 {% ftlmsg 'other-message' %}
{% endwithftl %}

As with ftlconf, the parameters do not have to be just literal strings, they
can refer to values in the context as most template tags can. You must supply
one or more of mode, bundle or language.

ftlmsg

Finally, to actually render a message, you need to use ftlmsg. It takes one
required parameter, the message ID, and any number of keyword arguments, which
correspond to the parameters you would pass in the arguments dictionary when
calling format() in Python code.

Example:

{% load ftl %}
{% ftlconf bundle='myapp.ftl_bundles.main' %}

<body>
 <h1>{% ftlmsg 'events-title' %}</h1>

 <p>{% ftlmsg 'events-greeting' username=request.user.username %}</p>
</body>

Alternative configuration

In some cases, use of ftlconf or withftl in templates can be tedious and
you may want to specify configuration of mode/bundle using a more global method.

An alternative is to set some configuration variables in the template context.
You can do this using some manual method, or using a context processor. The
variables you need to set are given by the constants below:

	django_ftl.templatetags.ftl.MODE_VAR_NAME for mode.

	django_ftl.templatetags.ftl.BUNDLE_VAR_NAME for the bundle.

For example, the following is a context processor that will return the required
configuration for the ftlmsg template tag.

import django_ftl.templatetags.ftl

from my_app.ftl_bundles import main

def ftl(request):
 return {
 django_ftl.templatetags.ftl.MODE_VAR_NAME: 'server',
 django_ftl.templatetags.ftl.BUNDLE_VAR_NAME: main,
 }

This could be configured to be used always via your TEMPLATES
context_processors [https://docs.djangoproject.com/en/stable/topics/templates/#django.template.backends.django.DjangoTemplates]
setting, or invoked manually and merged into a context dictionary.

HTML escaping

If your messages are plain text, and you use Django templates, then messages
will be HTML-escaped by Django’s automatic escaping mechanism [https://docs.djangoproject.com/en/stable/ref/templates/language/#automatic-html-escaping]
as normal, as there is nothing more to worry about. If you need to include HTML
fragments in the messages (e.g. to make some text bold or into a link), read on.

django-ftl plugs in to fluent_compiler’s escaping mechanism and provides an
escaper out of the box that allows you to handle HTML embedded in your messages.
To use it, give your message IDs the suffix -html. For example:

welcome-message-html = Welcome { $name }, you look <i>wonderful</i> today.

In this example, $name will have HTML escaping applied as you expect and
need, while the <i>wonderful</i> markup will be left as it is. The whole
message will be returned as a Django SafeText instance so that further HTML
escaping will not be applied.

It is recommended not to use -html unless you need it, because that will
limit the use of a message to HTML contexts, and it also requires translators to
write correct HTML (for example, with ampersands written as &).

Note that there are rules regarding how messages with different escapers can be
used. For example:

-brand = Ali & Alisha's ice cream

-brand-html = Ali & Alisha's cool ice cream

The -brand term can be used from any other message, and from a …-html
message it will be correctly escaped. The -brand-html term, however, can
only be used from other …-html messages.

Template considerations

A very common mistake in i18n is forgetting to set the lang tag on HTML
content. In the normal case, each base template that contains an <html> tag
needs to be modified to add the lang attribute - assuming you’ve used
middleware as described above this could be as simple as:

<html lang="{{ request.LANGUAGE_CODE }}">

See w3c docs on the lang attribute [https://www.w3.org/International/questions/qa-html-language-declarations] for
more information.

Setting the user language preference

How you want to set and store the user’s language preference will depend on your
application. For example, you can set it in a cookie, in the session, or store
it as a user preference.

Django has a built-in set_language view that you can use with django-ftl -
see the set_language docs [https://docs.djangoproject.com/en/stable/topics/i18n/translation/#the-set-language-redirect-view].
(It is designed to work with Django’s built-in i18n solution but works just as
well with django-ftl). It saves a user’s language preference into the session
(or a cookie if you are not using sessions), which you can then use later in a
middleware or view, for example.

Auto-reloading

By default, django-ftl loads and caches all FTL files on first usage. In
development, this can be annoying as changes are not reflected unless you
restart the development server. To solve this, django-ftl comes with an
auto-reloading mechanism for development mode. To use it, you must install
pyinotify:

$ pip install pyinotify

By default, if you have DEBUG = True in your settings (which is normally the
case for development mode), the reloader will be used and any changes to FTL
files references from bundles will be detected and picked up immediately.

You can also control this manually with your FTL settings in
settings.py:

FTL = {
 'AUTO_RELOAD_BUNDLES': True
}

Also, you can configure this behavior via the
Bundle constructor.

API documentation

	Activating/deactivating locales
	activate()

	deactivate()

	override()

	Bundles
	Bundle

	Error handling in Bundle

Activating/deactivating locales

	
django_ftl.activate(locale_code)

	Activate a locale given by a BCP47 locale code (e.g. “en-US”). All
Bundle objects will be switched to look for
translation files with that locale.

This uses a thread local variable internally to store the current locale.

	
django_ftl.deactivate()

	De-activate the currently activated locale. All
Bundle objects will fallback to the default
locale if you try to generate messages with them (or throw exceptions,
depending on the value of require_activate), until you activate another
language.

	
django_ftl.override(locale_code)

	A Python context manager that uses activate() to set a locale on
entry, and then re-activates the previous locale on exit. It can also be
used a function decorator.

Bundles

	
class django_ftl.bundles.Bundle(files, default_locale=None, require_activate=False, use_isolating=True)

	Create a bundle from a list of files.

	Parameters:

	
	list(str) (files) – Files are specified as relative paths that start from a specific locale
directory.

For example, if you are writing myapp, and you have
myapp/locales/en/myapp/main.ftl for English and
myapp/locales/de/myapp/main.ftl for German, then you would pass
["myapp/main.ftl"] which will refer to either of these files depending
on the active language.

If multiple paths are given, they will be added in order. This means that
if later files contain the same message IDs as earlier files, the later
definitions will shadow and take precedence over earlier ones.

	default_locale (str) – You may pass keyword argument default_locale (as a BCP47 string e.g.
“en-US”), which will be used as a fallback if an unavailable locale is
activated, or if a message ID is not found in the current locale. By
default, your LANGUAGE_CODE setting will be used if nothing is passed
(see Django docs for LANGUAGE_CODE [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-LANGUAGE_CODE]).

	require_activate (bool) – By default the default_locale will be used as a fallback if no
language has been activated. By passing require_activate=True,
format() will raise an exception if you attempt to use it without
first activating a language. This can be helpful to ensure that all code
paths that use Bundles are setting a language first, and especially for
ensuring that all module level uses of a Bundle use
format_lazy() instead of format().

	use_isolating (bool) – Controls whether substitutions in messages should be surrounded with bidi
isolation characters. Defaults to True. Pass False to disable this
(if, for example, all your text and substitutions are in scripts that go
in the same direction).

	auto_reload (bool) – Controls whether the Bundle will attempt to detect changes in FTL
files and reload itself. If nothing is passed, automatic behavior will be
used, which is:

	settings.AUTO_RELOAD_BUNDLES if it is set, otherwise:

	True if settings.DEBUG == True and pyinotify is installed

	False otherwise.

	functions (dict) – A dictionary of custom functions that will be made available to messages
in the bundle, as per the fluent-compiler docs on Custom Functions [https://fluent-compiler.readthedocs.io/en/latest/functions.html#custom-functions].

	
format(message_id, args=None)

	Generate a translation of the message specified by the message ID,
in the currently activated locale.

args is an optional dictionary of parameters for the message. These
will normally be:

	strings

	integers or floating point numbers (which will be formatted according to
locale rules)

	datetime objects (which will be formatted according to locale rules)

To specify or partially specify your own formatting choices for numbers
and datetime objects, see the fluent_compiler docs for
fluent_compiler.types.fluent_number [https://fluent-compiler.readthedocs.io/en/latest/usage.html#numbers]
and fluent_compiler.types.fluent_datetime [https://fluent-compiler.readthedocs.io/en/latest/usage.html#date-and-time].

The arguments passed in may also be strings or numbers that are used to
select variants.

	
format_lazy(message_id, args=None)

	Same as format(), but returns an object that delays translation
until the object is used in a string context.

This is important when defining strings at module level which
should be translated later, when the required locale is known.

Error handling in Bundle

Fluent’s philosophy is that in general, when generating translations, something
is usually better than nothing, and therefore it attempts to recover as much as
possible from error conditions. For example, if there are syntax errors in
.ftl files, it will try to find as many correct messages as possible and
pass over the incorrect ones. Or, if a message is formatted but it is missing an
argument, the string '???' will be used rather than turning the whole
message into an error of some kind. At the same time, these errors should be
reported somehow.

django-ftl in general follows the same principle. This means that things like
missing .ftl files are tolerated, and most Bundle methods rarely throw
exceptions.

Instead, when errors occur they are collected and then logged. Errors found in
.ftl message files, or generated at runtime due to bad arguments, for
example, will be logged at ERROR level using the stdlib logging framework, to
the django_ftl.message_errors logger. Ensure that these errors are visible
in your logs, and this should make these problems more visible to you.

If a message is missing entirely, for instance, you will get '???' returned
from Bundle.format rather than an exception (but the error will be logged).
If the message is missing from the requested locale, but available in the
default locale, the default will be used (but you will still get an error
logged). Therefore, you don’t need to add try / except around calls to
Bundle.format to provide a fallback, because that is done for you.

There are some places where django-ftl does throw exceptions, however. These
include:

	Bundle.format: If any of the bundle’s specified .ftl are missing from
the default locale, a django_ftl.bundles.FileNotFoundError exception will
be raised. It is assumed that such a problem with the default locale is a
result of a typo, rather than just a locale than has not been fully translated
yet, and so the developer is warned early. An empty .ftl file at the
correct path is sufficient to silence this error.

	Bundle.format: If require_activate is True, this method will raise a
django_ftl.bundles.NoLocaleSet exception if you attempt to use it before
calling activate. This is a deliberate feature to help flush out
cases where you are using Bundle.format() before setting a locale,
instead of Bundle.format_lazy().

These are deliberately intended to cause crashes, because you have a developer
error that should cause failure as early and as loudly as possible.

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/django-ftl/django-ftl/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature”
is open to whoever wants to implement it.

Write Documentation

django-ftl could always use more documentation, whether as part of the
official django-ftl docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/django-ftl/django-ftl/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up django-ftl for local development.

	Fork the django-ftl repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/django-ftl.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv django-ftl
$ cd django-ftl/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

 $ pip install -r requirements_test.txt
 $ pytest
 $ flake8 src tests

To run tests against all supported versions::

 $ pip install tox
 $ tox

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

We also have several linters and code formatters that we require use of,
including flake8 [http://flake8.pycqa.org/en/latest/], isort [https://github.com/timothycrosley/isort#readme] and black [https://github.com/psf/black]. These are most easily add by using pre-commit [https://pre-commit.com/]:

	Install pre-commit globally e.g. pipx install pre-commit if you already
have pipx [https://github.com/pypa/pipx].

	Do pre-commit install in the repo.

Now all the linters will run when you commit changes.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 3.6 at least. Check
https://travis-ci.org/django-ftl/django-ftl/pull_requests and make sure that
the tests pass for all supported Python versions.

Credits

Development Lead

	Luke Plant <L.Plant.98@cantab.net>

Contributors

None yet. Why not be the first?

History

0.14 (2023-02-16)

	Dropped support for Django < 2.0, added support for most recent version

	Dropped support for Python 3.6, added support for most recent versions

	Disabled BIDI isolation character for HTML messages - see https://github.com/django-ftl/django-ftl/issues/6

	Modernized packaging and tests, added more linters/black formatting

0.13 (2021-09-16)

	Dropped support for Python 2.7

	Added support for Django 3.2

	Added support for custom functions to the Bundle constructor

	Dropped useless mandatory configuration of mode parameter for template
tags - it now defaults to 'server' which is the only allowed option
anyway.

0.12.1 (2020-05-09)

	Fixed broken (and undocumented) check_all method.

0.12 (2020-04-02)

	Switch to the new APIs available in fluent_compiler 0.2.

	Performance improvements - large reduction in the percentage overhead
introduced by django-ftl (compared to raw fluent_compiler performance).

	Undocumented MessageFinderBase class has changed slightly: its load
method now returns a fluent_compiler.resource.FtlResource object instead
of a string. If you used a custom finder for Bundle you may need to
update it for this change.

0.11 (2020-03-24)

	Switched to using fluent_compiler as backend instead of experimental branch
in fluent.runtime. This means import changes are required:

	fluent_number and fluent_date, if you are using them, should be
imported from fluent_compiler.types instead of fluent.runtime.types

	Added Bundle.check_all method.

	Django 3.0 support

	Dropped support for Python 3.4 (it may work, but recent versions of lxml
do not install on it, which made running tests harder).

0.10 (2019-05-23)

	Upgraded to more recent version of fluent.runtime (0.1 with modifications)

	Fixed use_isolating behavior (BDI characters are now inserted for HTML messages)

	Thread-safety fixes for loading bundles.

	Corrected order of using ‘locales’ directories found via INSTALLED_APPS to
be consistent with normal Django convention.

0.9.1 (2019-03-02)

	Changed development autoreload mechanism to not interfere with Django’s
development server autoreload.

	Bug fix for case when invalid mode is specified in template tag.

	Various fixes and improvements to middlewares (plus tests)

	Thread-safe Bundle

	Method for configuring ftlmsg via context processor.

0.9 (2018-09-10)

	Working version

	Depends on our version of python-fluent

0.0.1 (2018-05-19)

	First release on PyPI - empty placeholder package

Index

 A
 | B
 | D
 | F
 | O

A

 	
 	activate() (in module django_ftl)

B

 	
 	Bundle (class in django_ftl.bundles)

D

 	
 	deactivate() (in module django_ftl)

F

 	
 	format() (django_ftl.bundles.Bundle method)

 	
 	format_lazy() (django_ftl.bundles.Bundle method)

O

 	
 	override() (in module django_ftl)

 nav.xhtml

 Table of Contents

 		
 Welcome to django-ftl’s documentation!

 		
 Installation

 		
 Usage

 		
 Terminology

 		
 FTL files and layout

 		
 Bundles

 		
 Activating a locale/language

 		
 Using middleware

 		
 Outside of the request-response cycle

 		
 Using bundles from Python

 		
 Lazy translations

 		
 Aliases

 		
 Using bundles from Django templates

 		
 ftlconf

 		
 withftl

 		
 ftlmsg

 		
 Alternative configuration

 		
 HTML escaping

 		
 Template considerations

 		
 Setting the user language preference

 		
 Auto-reloading

 		
 API documentation

 		
 Activating/deactivating locales

 		
 activate()

 		
 deactivate()

 		
 override()

 		
 Bundles

 		
 Bundle

 		
 Error handling in Bundle

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 0.14 (2023-02-16)

 		
 0.13 (2021-09-16)

 		
 0.12.1 (2020-05-09)

 		
 0.12 (2020-04-02)

 		
 0.11 (2020-03-24)

 		
 0.10 (2019-05-23)

 		
 0.9.1 (2019-03-02)

 		
 0.9 (2018-09-10)

 		
 0.0.1 (2018-05-19)

_static/minus.png

_static/plus.png

_static/file.png

